
C - Pointer arithmetic
A pointer in c is an address, which is a numeric value. Therefore, you can perform

arithmetic operations on a pointer just as you can on a numeric value. There are four
arithmetic operators that can be used on pointers: ++, --, +, and -

To understand pointer arithmetic, let us consider that ptr is an integer pointer which
points to the address 1000. Assuming 32-bit integers, let us perform the following
arithmetic operation on the pointer −

ptr++
After the above operation, the ptr will point to the location 1004 because each time ptr
is incremented, it will point to the next integer location which is 4 bytes next to the
current location. This operation will move the pointer to the next memory location
without impacting the actual value at the memory location. If ptr points to a character
whose address is 1000, then the above operation will point to the location 1001 because
the next character will be available at 1001.

Incrementing a Pointer
We prefer using a pointer in our program instead of an array because the variable pointer
can be incremented, unlike the array name which cannot be incremented because it is a
constant pointer. The following program increments the variable pointer to access each
succeeding element of the array −

#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};

 int i, *ptr;

 /* let us have array address in pointer */

 ptr = var;

 for (i = 0; i < MAX; i++) {

 printf("Address of var[%d] = %x\n", i, ptr);

 printf("Value of var[%d] = %d\n", i, *ptr);

 /* move to the next location */

 ptr++;

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var[0] = bf882b30
Value of var[0] = 10
Address of var[1] = bf882b34
Value of var[1] = 100
Address of var[2] = bf882b38
Value of var[2] = 200

Decrementing a Pointer
The same considerations apply to decrementing a pointer, which decreases its value by
the number of bytes of its data type as shown below −

#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};

 int i, *ptr;

 /* let us have array address in pointer */

 ptr = &var[MAX-1];

 for (i = MAX; i > 0; i--) {

 printf("Address of var[%d] = %x\n", i-1, ptr);

 printf("Value of var[%d] = %d\n", i-1, *ptr);

 /* move to the previous location */

 ptr--;

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var[2] = bfedbcd8
Value of var[2] = 200
Address of var[1] = bfedbcd4
Value of var[1] = 100
Address of var[0] = bfedbcd0

Value of var[0] = 10

Pointer Comparisons
Pointers may be compared by using relational operators, such as ==, <, and >. If p1 and
p2 point to variables that are related to each other, such as elements of the same array,
then p1 and p2 can be meaningfully compared.

The following program modifies the previous example − one by incrementing the
variable pointer so long as the address to which it points is either less than or equal to
the address of the last element of the array, which is &var[MAX - 1] −

#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};

 int i, *ptr;

 /* let us have address of the first element in pointer */

 ptr = var;

 i = 0;

 while (ptr <= &var[MAX - 1]) {

 printf("Address of var[%d] = %x\n", i, ptr);

 printf("Value of var[%d] = %d\n", i, *ptr);

 /* point to the previous location */

 ptr++;

 i++;

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var[0] = bfdbcb20
Value of var[0] = 10
Address of var[1] = bfdbcb24
Value of var[1] = 100
Address of var[2] = bfdbcb28
Value of var[2] = 200

